auxilliary cell - significado y definición. Qué es auxilliary cell
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es auxilliary cell - definición

FIELD IN A CLASSICAL OR QUANTUM FIELD THEORY THAT HAS A TRIVIAL EQUATION OF MOTION, WITH NO INDEPENDENT PROPAGATING DEGREES OF FREEDOM, WHICH CAN BE THEREFORE SUBSTITUTED AWAY IN FAVOR OF OTHER FIELDS
Auxilliary field; Auxiliary-field

Cell (music)         
SMALLEST INDIVISIBLE UNIT OF MUSIC OF RHYTHMIC AND MELODIC DESIGN
Musical cell; Intervallic cell; Rhythmic cell; Melodic cell
The 1957 Encyclopédie Laroussequoted in Nattiez, Jean-Jacques (1990). Music and Discourse: Toward a Semiology of Music (Musicologie générale et sémiologue, 1987).
Cellcell interaction         
  • basolateral membrane]] is depicted as "sheets"; the space between these sheets being the extracellular environment and the location of adhesion protein interaction.
INTERACTION BETWEEN CELLS
Cell-cell interaction; Cell–cell interactions; Cell-cell interactions
Cellcell interaction refers to the direct interactions between cell surfaces that play a crucial role in the development and function of multicellular organisms.
Molecular Cell         
SCIENTIFIC JOURNAL
Mol. Cell; Mol Cell; Molecular cell
Molecular Cell is a peer-reviewed scientific journal that covers research on cell biology at the molecular level, with an emphasis on new mechanistic insights. It was established in 1997 and is published two times per month.

Wikipedia

Auxiliary field

In physics, and especially quantum field theory, an auxiliary field is one whose equations of motion admit a single solution. Therefore, the Lagrangian describing such a field A {\displaystyle A} contains an algebraic quadratic term and an arbitrary linear term, while it contains no kinetic terms (derivatives of the field):

L aux = 1 2 ( A , A ) + ( f ( φ ) , A ) . {\displaystyle {\mathcal {L}}_{\text{aux}}={\frac {1}{2}}(A,A)+(f(\varphi ),A).}

The equation of motion for A {\displaystyle A} is

A ( φ ) = f ( φ ) , {\displaystyle A(\varphi )=-f(\varphi ),}

and the Lagrangian becomes

L aux = 1 2 ( f ( φ ) , f ( φ ) ) . {\displaystyle {\mathcal {L}}_{\text{aux}}=-{\frac {1}{2}}(f(\varphi ),f(\varphi )).}

Auxiliary fields generally do not propagate, and hence the content of any theory can remain unchanged in many circumstances by adding such fields by hand. If we have an initial Lagrangian L 0 {\displaystyle {\mathcal {L}}_{0}} describing a field φ {\displaystyle \varphi } , then the Lagrangian describing both fields is

L = L 0 ( φ ) + L aux = L 0 ( φ ) 1 2 ( f ( φ ) , f ( φ ) ) . {\displaystyle {\mathcal {L}}={\mathcal {L}}_{0}(\varphi )+{\mathcal {L}}_{\text{aux}}={\mathcal {L}}_{0}(\varphi )-{\frac {1}{2}}{\big (}f(\varphi ),f(\varphi ){\big )}.}

Therefore, auxiliary fields can be employed to cancel quadratic terms in φ {\displaystyle \varphi } in L 0 {\displaystyle {\mathcal {L}}_{0}} and linearize the action S = L d n x {\displaystyle {\mathcal {S}}=\int {\mathcal {L}}\,d^{n}x} .

Examples of auxiliary fields are the complex scalar field F in a chiral superfield, the real scalar field D in a vector superfield, the scalar field B in BRST and the field in the Hubbard–Stratonovich transformation.

The quantum mechanical effect of adding an auxiliary field is the same as the classical, since the path integral over such a field is Gaussian. To wit:

d A e 1 2 A 2 + A f = 2 π e f 2 2 . {\displaystyle \int _{-\infty }^{\infty }dA\,e^{-{\frac {1}{2}}A^{2}+Af}={\sqrt {2\pi }}e^{\frac {f^{2}}{2}}.}